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The role of droplet fluctuations in kinetic Ising models
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Absiract. We examine, by Monte Carlo simulation and the damage algorithm, the late
time behaviour of fluctuations in the low-temperature ordered phase of the two-dimen-
sional kinetic Ising model. It has been suggested ihat at late times correlations could be
dominated by long-ived droplet fluctuations of the other ordered phase, giving rise 10
stretched-exponential decays of the spin autocorrelation function. Over the time regimes
we have studied, we see no evidence for anomalous long-lived droplets and find that the
probability distribution for droplet lifetimes decays by an ordinary exponential.

Assumptions about the nature of long-time correlations in systems close to equilibrium
provide the basis for important aspects of non-equilibrium statistical mechanics.
For example, linear-response theory requires the existence of a perturbative regime
sufficiently close to equilibrium. In particular, let us consider the non-conscrved
kinetic Ising model (called [1,2] model A) in one of its two equivalent ordered
states below the critical temperature 7, where the average spin (S} ~ +1. If
one considers only the system’s linear response, equivalent in this case to the
Langevin equation linearized about the equilibrium state, the autocorrelation function
C(t) = (5(0)S(1)) — (5)* obeys

C(t)y ~et/T | (1)

for late times, when the system is prepared in equilibrium at ¢ = 0, where  is the
correlation time. Recently, however, independent phenomenological studies by Huse
and Fisher [3], and Takano et a! [4] have suggested that late time behaviour can be
dominated by stretched exponentials of the form

C(t) ~ e~ /™? ()
where ¢ < 1, which is inconsistent with the above prediction of linear response,

In this letter we present a numerical investigation of these predictions. We use
Monte Carlo simulation and damage dynamics [5-10] to study the close-to-equilibrium
fluctuations in the two-dimensional spin-flip kinetic Ising model. Over the time
regimes we have studied, we find behaviour consistent with ordinary exponential
decay.
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To obtain the time correlation function, one can naively argue as follows. Spatial
correlations fall off as C(r) ~ e~7/¢ with position » — oo, where ¢ is the correlation
fength. It is straightforward to establish this by, for example, Ornstein-Zernicke
theory. If correlations build up at a constant rate (ballistically) on small length scales,
ie. r oc t, then one has C(t) ~ e~*/7, This growth law for ~ < £ is natural to expect
when growth is limited by causality (r o ¢ is as fast as clusters can grow) and not by
thermodynamics, which might affect r >» £,

However, this argument does not explicitly consider the possible effect of large
droplets. Huse and Fisher have argued that the correlation function C(¢) is an
analytic function of the probability p(t) of a droplet living to time ¢, namely
C(t) ~ p(t) + O(p?). If cluster fluctuations within the ordered phase (S) =~ +1
are well-defined droplets of the other ordered phase (S) = —1, only the droplet’s
surface energy contributes to suppressing such a fluctuation. Since that surface energy
is proportional to the surface area, p ~ c"""l, in d dimensions. Furthermore, from
studies of the kinetics of first-order phase transitions [2], large droplets of size r
are known to decay via r ~ t", where n is 1/2 for processes involving no conserved
modes, or 1/3 for processes controlled by a conserved variable (which need not be the
order parameter). The argument then implies C'(¢) ~ e~(#/™)* as ¢ — oo, where the
exponent for stretched-exponential decay is ¢ = (d—1)n. When ¢ > 1 the decay will
be exponential, since the large droplets will be irrelevant. Independently, Takano er al
have given a similar argument, with the additional assumption that the large droplets
satisfy a self-similar scaling form as they do in first-order transitions. This derivation
yields [12] 1/¢ = 14 1/[(d—1)n]. These treatments [13] yield strong predictions for
the two-dimensional kinetic Ising model: for example, the Huse-Fisher scenario with
n = 1/2 implies C(t) ~ e"w; experimental representations include chemisorbed
systems undergoing order—disorder transitions. If a non-conserved order parametet’s
dynamics is controlled by a coupled conserved field (called [1,2] model C, with an
asymmetric coupling to the order parameter) so that n» = 1/3, the Huse-Fisher
picture implies C(t) ~ e~*” in three dimensions; experimental systems include
binary alloys prepared off stoichiometry undergoing order-disorder transitions.

Nevertheless, the analysis leading to either value of the growth exponent n
requires a full nonlinear treatment of the Langevin equation describing the dynamics
of the system [2].. Thus the droplet arguments are not consistent with linear response
theory [17): for example, on linearizing the nonlinear Langevin equation for model
A [1,2) around the ordered state one obtains C(t) ~ e~*/7 + O(e~*/7)% So there
is no obvious source for the breakdown of linear response. It is also worth noting
that previous analytic work by Binder, Stauffer and Miiller-Krumbhaar [14] on cluster
dynamics found exponential decay below T.,.

It is natural to test the predictions of the phenomenological droplet theories by
computer simulation. This was first attempted by Takano ef af [4] and Ogielski [15}
who used standard Monte Carlo methods to evaluate the spin correlation function
C(t) and the correlation function of the Fourier-transformed spin variables. In
two dimensions, Takano er al reported ¢ = 1/3, while Ogielski found inconclusive
results, and noted that long transients played an important role in the time regime
investigated: both groups were limited to times ¢ g 50-100 Monte Carlo steps
(Mcs). Mote recently Stauffer [16] used standard Monte Carlo to directly examine the
growth and decay of equilibrium droplets and found evidence supporting a stretched-
exponential decay. However the results were also restricted to short droplet lifetimes
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(t < 40 Mcs), owing to the difficulty of locating and analysing individual droplets.

We use damage dynamics [5-10] to evaluate the late time behaviour of close-
to-equilibrium fluctuations in the two-dimensional spin-flip kinetic Ising model [18).
This method, which involves the explicit introduction and monitoring of microscopic
fluctuations in replica lattices, has recently been used to study equilibrium response
and spatial correlation functions [8,9), as well as time-dependent correlations
functions and dynamic critical exponents {10] in a variety of systems. The advantage of
the technique comes from its ability to track the evolution of the induced microscopic
fluctuation independent of those thermal fluctuations common to the two replica
lattices. In our case this allows us to look at the bebaviour of fluctuations out to
significantly later times, t £ 500-1000 MCs, than in previous studies.

Starting with two Ising lattices with identical spin configurations we introduce a
microscopic fluctuation by taking one of these lattices and flipping a single, randomly
chosen spin. We then evolve the two systems, including the damaged site, according to
the same Metropolis Monte Carlo dynamics, by using the same sequence of random
numbers for both lattices. The damage M (t), which measures the magnitude of this
fluctuation (the cluster size) as a function of Monte Carlo time, t, can be defined
by M(t) = 3, 15;(t) — S¥(¢)|, where S;(1) is the spin at site ¢ in the undamaged
lattice, S¢(¢) is the state of the mrresponding site in the damaged lattice, and where
for convenience we take the snin stategs to he T or 0. For temneratures T <« T

SR VALVILY WA WLV LU dpann Sl v i AU tviLpRiadGLuivs ~ <£g3

damage can on the average only occur over length scales given by the correlation
length: damage grows to a length of order £ and then decreases and disappears in a
time proportional to .

We use the algorithm to estimate two quantities. The first quantity is N(t), the
ensemble-averaged number of clusters which live until time ¢ This measures the
probability that a system damaged at time ¢ = 0 will lose memory of this at time %, s0
the integral [ N(t)dt is just the probability that a droplet still exists at time ¢. As
noted by Huse and Fisher [3] the correlation function C(¢) is proportional, to lowest
order, to this probability. Thus if C(t) takes on a non-exponential form at late times
N(t) should also do so [11]. We also measure the ensemble-averaged size M (¢, ¢)
of those clusters which vanish at some fixed time ¢, as a function of time t'. Damage
can only become large if the initial damage causes a large anti-domain fiuctuation in
one system, but not the other. Therefore monitoring the dynamics of damage cluster
evolution for long-lived events is equivalent to monitoring the dynamics of droplet
growth and decay. This allows us to check whether large, long-lived droplets behave
differently from small, short-lived ones.

We used a multi-spin coding metropolis algorithm, and studied temperatures
relatively close to the critical temperature T, 0.97;, and 0.957,, to minimize non-
universal differences between the Langevin model A and the kinetic Ising model. The
correlation lengths at these two temperatures are £ ~ 3 and 5, respectively, in units of
the lattice spacing. Since we damage only a single site the perturbation is small on the
scale of the correlation length, ensuring that the induced fluctuation is microscopic
and essentially thermal. Systems examined were square lattices of sizes 322 and 642,
We ensured there were no appreciable finite-size effects by undertaking test runs on
a ]aroer system, and also by Qbsenrmo that a neo]wlhle fraction of damage cnrgad
through the entire system durmg the course of the snmulatlons Apprommately 107
trials were performed at each temperature. As can be seen from figure 1, we have
observed rather large cluster fluctuations. This is a cluster roughly three correlation
lengths in diameter. The largest clusters which appreciably contribute to our results
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are of diameter 3-7 correlation lengths. Nevertheless, these very large droplets we
observe are fuzzy and are not well-formed compact droplets.

Figure 2 shows a log-log plot of the distribution N(#) as a function of time
t. Results are shown for T = 0.95T,; similar results were observed at the lower
temperature. The distributions have been normalized so that N (1)} = 50. For early
times there is a clear 1/¢% dependence. This can be understood as follows. Consider a
system of size L%. The probability of a fluctuation of size £ will be ~ (L/€)%e~**"",
where the first term is proportional to the available volume in phase space (ie. the
number of ways of making clusters of size £) while the second term arises from the
free energy of the fluctuation, and will be negligible at early times. If we assume that
the early-time size is proportional to the lifetime, £ ~ ¢, we get the limiting form
1‘:’ (t) o 1/t%. We can therefore usefully present the data by estimating the form of
t4N(1).

In figure 3 we plot t2N(1) as a function of time. This semi-log plot yields good
straight-line fits to the late time data, implying ordinary exponential decay at late
times rather than a stretched exponential. From this, and other more complicated
fits, we conclude that simple exponential decay provides the best representation of
the data over the time regimes we have studied.
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Figure 2. Log-log plot of the cluster lifetime Fignre 3. Log-linear plot of the quantity t2N (1)
distribution N(t) as a function of time ¢ for asa function of ¢, showing the late lime exponential
T = 095T:.. The carly-time 1/t dependence decay.

is clearly evident.

In figure 4 we plot the average evolution in time ¢’ of the size M (£, t') of clusters
which grow, decay and then disappear at times ¢ = 61-500. According to the droplet
models the time evolution of long-lived large droplets should be quite different from
that of short-lived smaller ones. However, it is straightforward to see that there is
no qualitative difference between the clusters on the time scales ¢ = 61-500: indeed
the similarity in the shapes of the M (¢,¢') versus ¢’ suggests one should scale the
data via the ansatz m*(t*) = M(t',t)/ M, (1), where t* = t'ft and M (1) is
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the maximum value of M for a given lifetime ¢ [19]. The transformed data collapse
onto a single universal curve, as shown in figure 4, demonstrating that large and small
clusters behave in the same fashion, over the time scales we have investigated.
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Figure 4. The top shows the average size M (t',t) for clusters which disapear at times
t = 61, 81, 171, 250, 300, 460 and 500, from left to right. The bottom shows that
scaled size m* versus scaled time t* is independent of time t. The scaled size is
m* = M(t', 1)/ Mnax(t), while t* = t'/t, where Mpax(t) is the maximum M for a
given t. The dashed parabola is the shape for a ballistic growth law, as discussed in the
text,

The form of m*(t"*) is also indicative of the processes taking place. First note that
the data are approximately symmetric about the maximum, as required by detailed
balance. Furthermore, the shape of the scaling function determines the way clusters
grow and decay. Since the scaled size of the two-dimensional clusters is m* ~ £2
ballistic growth and decay, with £ ~ t', implies that the scaling function m=(t*) ~ 2,
ie. the unique parabola shown by the dashed line in figure 4. The data are entirely
consistent with ballistic growth, which again implies exponential decay over the time
regimes we have investigated.

Finally, despite this numerical evidence, one must ask if the phenomenological
droplet arguments are so compelling as to suggest that our work is only observing
transients. Note that those theories assume fluctuations are well-defined droplets. In

nuclcation theory, where droplets in local equilibrium play an important role, the
critical droplet is characterized by two length scales: the width of the interface, which
is proportjonal to £, and the droplet radius, which is proportional to the reciprocal
of the applied field. However, in phenomenological droplet theories only one length

scale is assuredly present, the correlation length. It is therefore not apparent that
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there will be a well-defined separation of length scales between the droplet’s surface
width and its radius, if both are proportional to £. Again note the fuzzy features of
the typical large cluster in figure 1.

In conclusion, we find that our data are consistent with ordinary exponential
decay. We cannot rule out the possibility of other behaviour on longer time scales
than we have studied. Nevertheless, the consistency of our results for the cluster
decay, the scaling of the size M(#',t) of clusters, and the absence of an obvious
length scale to set a fluctuating droplet size, lead us to believe that our results are
indicative of the asymptotic time regime. Finally, as mentioned elsewhere, we believe
a good candidate for an extensive experimental test, capable of probing time scales
much Jarger than in a numerical study, would be a binary alloy such as 3-CuZn
prepared off stoichiometty.

We thank Drs B C Eu, Z Rdcz, N Jan, A Coniglio, D Stauffer, M Sutton, D A
Huse and particularly C Roland and K Elder for useful discussions. This work was
supported by the Natural Sciences and Engineering Research Council of Canada, les
Fonds pour la Formation de Chercheurs et PAide 4 la Recherche de la Province du
Québec.

References

[1] Hohenberg P and Halperin B 1 1977 Rev Mod. Phys. 49 435

[2] Guaton J D, San Miguel M and Sahni P S 1983 Phase Transitions and Critical Phenomena
vol 8, ed C Domb and I L Lebowitz {(New York: Academic)

[3] Huse D A and Fisher D 8§ 1987 Phys. Rev B 35 6841

f4] Takano H, Nakanishi H and Miyashita 8 1988 Phys. Rev. B 37 3716

[5] Derrida B and Weisbuch G 1987 Euwrophys. Lett. 4 657

[6] Costa U M S 1987 J Phys. A: Math. Gen. 20 1583

{71 Stanley H E, Stauffer D, Kertész J and Herrmann H J 1987 Phys. Rew Leit. 59 2326

[8] Coniglio A, de Arcangelis L, Herrmann H J and Jan N 1989 Europhys. Let. 8 315

[9) Heerman H J 1990 Compurer Simulation Studies in Condensed Maiter Physics IT (Springer Series in
Physics 45) ed D P Landau, K K Mon and H B Schuttler (Berlin: Springer) p 56

[10] Poole P H and Jan N 1990 J Phys. A: Math. Gen. 23 1A53

[111 Huse and Fisher [3] give a droplet argument for C' ~ p{1— p), where p(t) is the probability that a
droplet lasts until time t. In our case this implies C(?) ~ [ N(t) d¢ at late times, when C(¥)
is dominated by the lowest order term. We have checked this by comparing C(t}, evaluated by
standard Monte Carlo methods, with the integral of N(2). The two functions are nearly identical
over the latest time regimes acessible to both simulation methods (¢ € 160 Mcs).

[12] While the generalization of the Huse and Fisher argument to n 3 1/2 is trivial, that to the work
of Takano er gl requires an assumption concerning the weighting of the droplet distribution in
the spirit of the original work. This point is also discussed in [13]. )

[{3] Tang C, Nakanishi H and Langer' T S 1989 Fhys Rew A 40 995 have investigated some of the
assumptions of the phenomenological approach, through a more rigorous theory. They introduce
a model dynamical sysiem wherein all fluctuations are assumed to be well-defined dropicts. From
this, they recover analytically the results of Huse and Fisher, but not those of Thkano et af
implying the former theory incorporates droplet fluctuations self-consistently. However, the larger
issue of the behaviour of, say, model A cannot be tested through the approach of Tang er al.

[14] Binder K, Stauffer D and Miiller-Krumbhaar H 1975 Phys. Rew B 12 5261

[15] Ogielski A T 1987 Phys. Rev. B 36 7315

[16] Stauffer D S 1992 Ann. Phys, Lpz 1 52

[17] Such a breakdown of transport theory has a precedent in two-dimensional hydrodynamics, where
transport coefficients are renormalized by relevant logarithms in the long-time limit. This was
found in the classic numerical study of Alder, Wainwright and co-workers, and is now understood



L1202 Letter to the Editor

by both rigorous and phenomenological theory. A review is given by Pomeau Y and Résibois P
1975 Phys. Rep. 19 63

[L8] Further results, as well as a study of the kinetics of domain growth by this method, will be presented
in a future paper by Graham [ S, Roland C, and Grant M.

[19]) We find Mmax = ¢. This is consistent with slowing down near Tg, since we expect Mmax ~ t 2/%,
where z is the dynamical critical exponent defined through £* ~ t as T — T.. Many methods
find z & 2, including earlier studics at 0.95 T, although the dynamical critical region is thought
to be rather narrow in temperature, so we are presumably only seeing an effective z.



