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AbslrseL We =amine, by Monte Carlo simulation and the damage algorithm. the late 
time behaviour of fluctuations in the low-temperature ordered phase of the twodimen- 
sional kinetic Ising model. It has been suggested that a1 late times correlations could bc 
dominated by long-lived droplet fluctuations of the other ordered phase, giving nse 10 
stretched-exponential decay% of the spin autocomelation function. Over the time regimes 
we have studied, we see no evidence far anomalous long-lived droplets and find that the 
probabilily distribution for droplet lifetimes decays by an ordinaly exponential. 

Assumptions about the nature of long-time correlations in systems close to equilibrium 
provide the basis for important aspects of non-equilibrium statistical mechanics. 
For example, linear-response theory requires the existence of a perturbative regime 
sufficiently close to equilibrium. In particular, let us consider the non-conserved 
kinetic king model (called [1,2] model A) in one of its two equivalent ordered 
states below the critical temperature T,, where the average spin (S) % fl. If 
one considers only the system’s linear response, equivalent in this case to the 
Langevin equation linearized about the equilibrium state, the autocorrelation function 
C j t )  = (S(O)S(1)) - (S)2 obeys 

for late times, when the system is prepared in equilibrium at 1 = 0, where T is the 
correlation time. Recently, however, independent phenomenological studies by Huse 
and Fisher [3], and Thkano er a1 [4] have suggested that late time behaviour can be 
dominated by stretched exponentials of the form 

~ ( 1 )  e-(t/r)* (2) 

where @ < 1, which is inconsistent with the above prediction of linear response. 
In this letter we present a numerical investigation of these predictions. We use 

Monte Carlo simulation and damage dynamics 15-IO] to study the close-to-equilibrium 
fluctuations in the two-dimensional spin-flip kinetic Ising model. Over the time 
regimes we have studied, we find behaviour consistent with ordinary exponential 
decay. 
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Ib obtain the time correlation function, one can naively argue as follows. Spatial 
correlations fall off as C(T)  - e-'/( with position T - 03, where ( is the correlation 
length. It is straightforward to establish this by, for example, Ornstein-Zernicke 
theory. If correlations build up at a constant rate (ballistically) on small length scales, 
Le. T a t ,  then one has C(1) - e-t/T. This growth law for T < ( is natural to expect 
when growth is limited by causality (T 0: t is as fast as clusters can grow) and not by 
thermodynamics, which might affect T > (. 

However, this argument does not explicitly consider the possible effect of large 
droplets. Huse and Fisher have argued that the correlation function C ( t )  is an 
analytic function of the probability p ( t )  of a droplet living to time t, namely 
C(1) - p ( 1 )  + O ( p 2 ) .  If cluster fluctuations within the ordered phase (S) % +1 
are well-defined droplets of the other ordered phase (S) z -1, only the droplet's 
surface energy contributes to suppressing such a fluctuation. Since that surface energy 
is proportional to the surface area, p - e-rd-', in d dimensions. Furthermore, from 
studies of the kinetics of first-order phase transitions [2], large droplets of size T 

are known to deiay via T - in, where n is 1/2 for processes involving no conserved 
modes, or 1/3 for processes controlled by a conserved variable (which need not be the 
order parameter). The argument then implies C(t )  - e-(*/r)' as 1 + 03, where the 
exponent for stretched-exponential decay is 4 = (d-1)n. When 4 > 1 the decay will 
be exponential, since the large droplets will be irrelevant. Independently, Takano er a1 
have given a similar argument, with the additional assumption that the large droplets 
satisfy a self-similar scaling form as they do in first-order transitions. This derivation 
yields [12] l /+ = 1 +  l /[(d- l)n]. These treatments [13] yield strong predictions for 
the two-dimensional kinetic Ising model: for example, the Huse-Fisher scenario with 
n = 1/2 implies ~ ( t )  - e-"". , experimental representations include chemisorbed 
systems undergoing order-disorder transitions. If a non-conserved order parameter's 
dynamics is controlled by a coupled conserved field (called [1,2] model C, with an 
asymmetric coupling to the order parameter) so that n = 1/3, the Hue-Fisher 
picture implies C( 1) - e-t2/' in three dimensions; experimental systems include 
binary alloys prepared off stoichiometry undergoing order-disorder transitions. 

Nevertheless, the analysis leading to either value of the growth exponent n 
requires a full nonlinear treatment of the Langevin equation describing the dynamics 
of the system [2].. Thus the droplet arguments are not consistent with linear response 
theory [17]: for example, on linearizing the nonlinear Langevin equation for model 
A [1,2] around the ordered state one obtains C(1)  - e-*/r + O(e-*/')*. So there 
is no obvious source for the breakdown of linear response. It is also worth noting 
that previous analytic work by Binder, Stauffer and Muller-Krumbhaar [14] on cluster 
dyiiamis found exponential decay below T,. 

It is natural to test the predictions of the phenomenological droplet theories by 
computer simulation. This was first attempted by 'hkano el 01 [4] and Ogielski [15] 
who used standard Monte Carlo methods to evaluate the spin correlation function 
C(1) and the correlation function of the Fourier-transformed spin variables. In 
two dimensions, Takano er a1 reported 4 = 1/3, while Ogielski found inconclusive 
results, and noted that long transients played an important role in the time regime 
investigated: both groups were limited to times t < 50-100 Monte Carlo steps 
(MCS). More recently Stauffer [16] used standard Monte Carlo to directly examine the 
growth and decay of equilibrium droplets and found evidence supporting a stretched- 
exponential decay. However the results were also restricted to short droplet lifetimes 

.. 
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(t 
We use damage dynamics [S-101 to evaluate the late time behaviour of close- 

to-equilibrium fluctuations in the two-dimensional spin-flip kinetic Ising model [18]. 
This method, which involves the explicit introduction and monitoring of microscopic 
fluctuations in replica lattices, has recently been used to study equilibrium response 
and spatial correlation functions [8,9], as well as time-dependent correlations 
functions and dynamic critical exponens [lo] in a variety of systems. The advantage of 
the technique comes from its ability to track the evolution of the induced microscopic 
fluctuation independent of those thermal fluctuations common to the two replica 
lattices. In our case this allows us to look at the behaviour of fluctuations out to 
significantly later times, t < 500-1OOO MCS, than in previous studies. 

Starting with two Ising lattices with identical spin configurations we introduce a 
microscopic fluctuation by taking one of these lattices and flipping a single, randomly 
chosen spin. We then evolve the two systems, including the damaged site, according to 
the same Metropolis Monte Carlo dynamics, by using the same sequence of random 
numbers for both lattices. The damage M ( t ) ,  which measures the magnitude of this 
fluctuation (the cluster size) as a function of Monte Carlo time, 1 ,  can be defined 
by M ( 1 )  = xi IS i ( t )  - Sf ( t ) l ,  where S i ( l )  is the spin at site i in the undamaged 
lattice, S$( t )  is the state of the corresponding site in the damaged lattice, and where 

damage can on the average only occur over length scales given by the correlation 
length damage grows to a length of order f and then decreases and disappears in a 
time proportional to r. 

We use the algorithm to estimate two quantities. The first quantity is N ( t ) ,  the 
ensemble-averaged number of clusters which live until time 1.  This measures the 
probability that a system damaged at time 1 = 0 will lose memory of this at time 2, so 
the integral s;" N( t) d t  is just the probability that a droplet still exists at time t. As 
noted by Huse and Fisher [3] the correlation function C(t )  is proportional, to lowest 
order, to this probability. Thus if C ( t )  takes on a non-exponential form at late times 
N ( t )  should also do so Ill]. We also measure the ensemble-averaged size M(1' , t )  
of those clusters which vanish at some fixed time t ,  as a function of time 1'. Damage 
can only become large if the initial damage causes a large anti-domain fluctuation in 
one system, but not the other. Therefore monitoring the dynamics of damage cluster 
evolution for long-lived events is equivalent to monitoring the dynamics of droplet 
growth and decay. This allows us to check whether large, long-lived droplets behave 
differently from small, short-lived ones. 

We used a multi-spin coding metropolis algorithm, and studied temperatures 
relatively close to the critical temperature T,, 0.9 T, and 0.95 Tc, to minimize non- 
universal differences between the Langevin model A and the kinetic king model. The 
correlation lengths at these two temperatures are = 3 and 5, respectively, in units of 
the lattice spacing. Since we damage only a single site the perturbation is small on the 
scale of the correlation length, ensuring that the induced fluctuation is microscopic 
and essentially thermal. Systems examined were square lattices of sizes 32* and 64*. 
We ensured there were no appreciable finite-size effects by undertaking test runs on 

through the entire system during the course of the simulations. Approximately lo7 
trials were performed at each temperature. As can be seen from figure 1, we have 
observed rather large cluster fluctuations. This is a cluster roughly three correlation 
lengths in diameter. The largest clusters which appreciably contribute to our results 

40 MCS), owing to the difficulty of locating and analysing individual droplets. 

fer *.venie.ce we t&e the rnin rtltPr be I 0. :.qerz:-res T / T "I,--- ".-.I" . 'e,  

a larger system, and also by observing that a neg!igih!e fractim nf damage spr& 
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are of diameter 3-7 correlation lengths. Nevertheless, these very large droplets we 
observe are fuzzy and are not well-formed compact droplets. 

Figure 2 shows a log-log plot of the distribution N ( t )  as a function of time 
1. Results are shown for T = 0.95Tc; similar results were observed at the lower 
temperature. The distributions have been normalized so that N(1) = 50. For early 
times there is a clear l / tz dependence. This can be understood as follows. Consider a 
system of size Ld.  The probability of a fluctuation of size e will be - ( L/t)de-k'"-', 
where the first term is proportional to the available volume in phase space (i.e. the 
number of ways of making clusters of size e )  while the second term arises from the 
free energy of the fluctuation, and will be negligible at early times. If we assume that 
the early-time size is proportional to the lifetime, e - t, we get the limiting form 
N ( t )  m l / td.  We can therefore usefully present the data by estimating the form of 
t *N( t ) .  

In figure 3 we plot t Z N ( t )  as a function of time. This semi-log plot yields good 
straight-line fits to the late time data, implying ordinary exponential decay at late 
times rather than a stretched exponential. From this, and other more complicated 
fits, we conclude that simple exponential decay provides the best representation of 
the data over the time regimes we have studied. 

t (mcs) t (mcs) 

Figure 2. Lag-log plot of lhe cluster lifetime 
dislribulion N ( t )  as a function of lime t for 
T = 0.95T,. The early-time l / t 2  dependence decay. 
is clearly evident. 

Figure 3. Ing-linear plnt of the quantity t2N(t) 
as a function o f t ,  showing the late time exponential 

In figure 4 we plot the average evolution in time 1' of the size M ( t ,  1') of clusters 
which grow, decay and then disappear at times t = 61-500. According to the droplet 
models the time evolution of long-lived large droplets should be quite different from 
that of short-lived smaller ones. However, it is straightforward to see that there is 
no qualitative difference between the clusters on the time scales t = 61-500: indeed 
the similarity in the shapes of the M ( t , t ' )  versus 1' suggests one should scale the 
data via the ansatz m'(t') = M ( t ' , t ) / M m m ( t ) ,  where t* = t ' / t  and M,,( t )  is 
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the maximum value of A4 for a given lifetime t [19]. The transformed data collapse 
onto a single universal curve, as shown in figure 4, demonstrating that large and small 
clusters behave in the same fashion, over the time scales we have investigated. 
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Figure 4. The top shows the average size M ( t ' ,  t )  for cluslem which disapear at times 
t = 61. 81, 171, 250. 300, 4W and 500, from left to right. The bottom shows that 
scaled size m* vcmus scaled time t' is independent of time t .  The scaled size is 
m* = M ( t ' , t ) / M , , ( t ) ,  while t* = V / t ,  where Mma.(t)  is the maximum M for a 
given t .  The dashed parabola is the shape for a ballislic growth law, as discussed in the 
text. 

The form of m*(t*) is also indicative of the processes taking place. First note that 
the data are approximately symmetric about the maximum, as required by detailed 
balance. Furthermore, the shape of the scaling function determines the way clusters 
grow and decay. Since the scaled size of the two-dimensional clusters is m' - e' 
ballistic growth and decay, with e - t', implies that the scaling function m'(t') - t**, 
i.e. the unique parabola shown by the dashed line in figure 4. The data are entirely 
consistent with ballistic growth, which again implies exponential decay over the time 
regimes we have investigated. 

Finally, despite this numerical evidence, one must ask if the phenomenological 
droplet arguments are so compelling as to suggest that our work is only observing 
transients. Note that those theories assume fluctuations are well-defined droplets. In 
I I U c I ~ a L L " , ,  I rLar 'y ,  WllGZci  uruprGr> 11, ,U-, cqurrr",lur,r p a y  a,, rL"p"lLa.rlr ,"IC., ,,I& 

critical droplet is characterized by two length scales: the width of the interface, which 
is proportional to F ,  and the droplet radius, which is proportional to the reciprocal 
of the applied field. However, in phenomenological droplet theories only one length 
scale is assuredly present, the correlation length. It is therefore not apparent that 

"..A"".:,." .I...,..... ... I...-.. A---,...- :- 1^^^1 --..:,:I.-:..... -I,... ^" :-" ,.-... ". -,.la .La 
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there will be a well-defined separation of length scales between the droplet's surface 
width and its radius, if both are proportional to (. Again note the fuzzy features of 
the typical large cluster in figure 1. 

In conclusion, we find that our data are consistent with ordinaly exponential 
decay. We cannot rule out the possibility of other behaviour on longer time scales 
than we have studied. Nevertheless, the consistency of our results for the cluster 
decay, the scaling of the size M ( t ' , t )  of clusters, and the absence. of an obvious 
length scale to set a fluctuating droplet size, lead us to believe that our results are 
indicative of the asymptotic time regime. Finally, as mentioned elsewhere, we believe 
a good candidate for an extensive experimental test, capable of probing time scales 
much larger than in a numerical study, would be a binary alloy such as P-CuZn 
prepared off stoichiometly. 

We thank Drs B C Eu, Z Rdcz, N Jan, A Coniglio, D Stauffer, M Sutton, D A 
Huse and particularly C Roland and K Elder for useful discussions. This work was 
supported by the Natural Sciences and Engineering Research Council of Canada, les 
Fonds pour la Formation de Chercheurs et 1'Aide A la Recherche de la Province du 
QuBbec. 
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